*** Welcome to piglix ***

UNIVAC II


The UNIVAC II was an improvement to the UNIVAC I that UNIVAC first delivered in 1958. The improvements included core memory of 2,000 to 10,000 words, UNISERVO II tape drives which could use either the old UNIVAC I metal tapes or the new PET tapes, and some of the circuits were transistorized (although it was still a vacuum tube computer). It was fully compatible with existing UNIVAC I programs for both code and data.

Above figures are approximate and do not include input-output devices.

Decimal point occurs at the right of the sign digit.

Addition, subtraction, and multiplication times given below include reading and executing the instruction. The time includes formation of the result in the accumulator. All instructions, however are performed at minimum latency rates.

All users utilize a 2,000 word 24,000 digit, magnetic core storage unit. Each of the planes is divided into two sections of 50 by 40 cores, making 2,000 cores in each section. Each section contains one core - for one binary position (bit) - of every one of the 2,000 words. The same relative binary position of the other half-word is held in a core in the same physical location in the other section of the plane. Thus each plane contains two binary positions in each of 2,000 words; the first and 43rd, for example, or the 9th and 52nd. Physically the memory is a rectangular prism 7.25×10×12.75 inches (18.4×25.4×32.4 cm).

A memory location thus always implies two cores in all 42 planes. The two cores are determined by the intersection of one column of fifty possible columns with two rows of the 80 possible rows. One row is in each section of the plane. All 42 planes are used twice for each word.

Associated with the memory is a half-word insertion register of 42-bit capacity. Each bit is temporarily stored in a magnetic core of this register during a memory reference. Each of these register cores is associated with one of the 42 memory planes. To write into the memory, the first half of the word is placed in the insertion register and the address selector alerts the appropriate column and the proper row of the top section in each of the 42 planes. At the appropriate instant the information is transferred from each core of the insertion register to the selected core in the corresponding plane of the memory. 42 pulse times later, the second half word has been placed in the insertion register and the process is repeated in the lower section of the memory. Read-outs are accomplished in a reverse manner. The speed of the memory has been adjusted to the speed of the arithmetic portion of the Univac which permits the transfer into or out of the memory of 12 characters in 40 microseconds. Word pulses flow from or to the high speed bus and the insertion register via a mechanism which converts from serial to parallel and vice versa, in 42 bit modules.


...
Wikipedia

...