*** Welcome to piglix ***

U-Pb


Uranium–lead dating, abbreviated U–Pb dating, is one of the oldest and most refined of the radiometric dating schemes. It can be used to date rocks that formed from about 1 million years to over 4.5 billion years ago with routine precisions in the 0.1–1 percent range.

The dating method is usually performed on the mineral zircon. The mineral incorporates uranium and thorium atoms into its crystal structure, but strongly rejects lead. Therefore, one can assume that the entire lead content of the zircon is radiogenic, i.e. it is produced solely by a process of radioactive decay after the formation of the mineral. Thus the current ratio of lead to uranium in the mineral can be used to determine its age.

The method relies on two separate decay chains, the uranium series from 238U to 206Pb, with a half-life of 4.47 billion years and the actinium series from 235U to 207Pb, with a half-life of 710 million years.

The above uranium to lead decay routes occur via a series of alpha (and beta) decays, in which 238U with daughter nuclides undergo eight total alpha and six beta decays whereas 235U with daughters only experience seven alpha and four beta decays.

The existence of two 'parallel' uranium-lead decay routes (238U to 206Pb and 235U to 207Pb) leads to multiple dating techniques within the overall U–Pb system. The term U–Pb dating normally implies the coupled use of both decay schemes in the 'concordia diagram' (see below).

However, use of a single decay scheme (usually 238U to 206Pb) leads to the U–Pb isochron dating method, analogous to the rubidium-strontium dating method.


...
Wikipedia

...