*** Welcome to piglix ***

Twincharger


Twincharger refers to a compound forced induction system used on some piston-type internal combustion engines. It is a combination of an exhaust-driven turbocharger and an engine-driven supercharger, each mitigating the weaknesses of the other. A belt-driven or shaft-driven supercharger offers exceptional response and low-rpm performance as it has no lag time between the application of throttle and pressurization of the manifold (assuming that it is a positive-displacement supercharger such as a Roots type or twin-screw and not a Centrifugal compressor supercharger, which does not provide boost until the engine has reached higher RPMs). When combined with a large turbocharger — if the "turbo" was used by itself, it would offer unacceptable lag and poor response in the low-rpm range — the proper combination of the two can offer a zero-lag powerband with high torque at lower engine speeds and increased power at the higher end. Twincharging is therefore desirable for small-displacement motors (such as VW's 1.4TSI), especially those with a large operating rpm, since they can take advantage of an artificially broad torque band over a large speed range.

Twincharging does not refer to a twin-turbo arrangement, but rather when two different kinds of compressors are used.

A twincharging system combines a supercharger and turbocharger in a complementary arrangement, with the intent of one component's advantage compensating for the other component's disadvantage. There are two common types of twincharger systems: series and parallel.

The series arrangement, the more common arrangement of twinchargers, is set up such that one compressor's (turbo or supercharger) output feeds the inlet of another. A sequentially-organized supercharger is connected to a medium- to large-sized turbocharger. The supercharger provides near-instant manifold pressure (eliminating turbo lag, which would otherwise result when the turbocharger is not up to its operating speed). Once the turbocharger has reached operating speed, the supercharger can either continue compounding the pressurized air to the turbocharger inlet (yielding elevated intake pressures), or it can be bypassed and/or mechanically decoupled from the drivetrain via an electromagnetic clutch and bypass valve (increasing efficiency of the induction system).


...
Wikipedia

...