*** Welcome to piglix ***

Turing jump


In computability theory, the Turing jump or Turing jump operator, named for Alan Turing, is an operation that assigns to each decision problem X a successively harder decision problem X with the property that X is not decidable by an oracle machine with an oracle for X.

The operator is called a jump operator because it increases the Turing degree of the problem X. That is, the problem X is not Turing reducible to X. Post's theorem establishes a relationship between the Turing jump operator and the arithmetical hierarchy of sets of natural numbers. Informally, given a problem, the Turing jump returns the set of Turing machines which halt when given access to an oracle that solves that problem.

The Turing jump of X can be thought of as an oracle to the halting problem for oracle machines with an oracle to X.

Formally, given a set X and a Gödel numbering φiX of the X-computable functions, the Turing jump X of X is defined as

The nth Turing jump X(n) is defined inductively by

The ω jump X(ω) of X is the effective join of the sequence of sets X(n) for nN:


...
Wikipedia

...