*** Welcome to piglix ***

Tumor suppressor protein


A tumor suppressor gene, or antioncogene, is a gene that protects a cell from one step on the path to cancer. When this gene mutates to cause a loss or reduction in its function, the cell can progress to cancer, usually in combination with other genetic changes. The loss of these genes may be even more important than proto-oncogene/oncogene activation for the formation of many kinds of human cancer cells. Tumor suppressor genes can be grouped into categories including caretaker genes, gatekeeper genes, and landscaper genes; the classification schemes are evolving as medicine advances, learning from fields including molecular biology, genetics, and epigenetics.

Unlike oncogenes, tumor suppressor genes generally follow the "two-hit hypothesis," which implies that both alleles that code for a particular protein must be affected before an effect is manifested. This is because if only one allele for the gene is damaged, the second can still produce the correct protein. In other words, mutant tumor suppressors' alleles are usually recessive whereas mutant oncogene alleles are typically dominant.

The two-hit hypothesis was first proposed by A.G. Knudson for cases of retinoblastoma. Knudson observed that the age of onset of retinoblastoma followed 2nd order kinetics, implying that two independent genetic events were necessary. He recognized that this was consistent with a recessive mutation involving a single gene, but requiring biallelic mutation. Oncogene mutations, in contrast, generally involve a single allele because they are gain-of-function mutations.

There are exceptions to the "two-hit" rule for tumor suppressors, such as certain mutations in the p53 gene product. p53 mutations can function as a "dominant negative," meaning that a mutated p53 protein can prevent the function of normal protein from the un-mutated allele.


...
Wikipedia

...