False color (or false colour) refers to a group of color rendering methods used to display images in color which were recorded in the visible or non-visible parts of the electromagnetic spectrum. A false-color image is an image that depicts an object in colors that differ from those a photograph (a "true-color" image) would show.
In addition, variants of false color such as pseudocolor (see discussion), density slicing (see discussion), and choropleths (see discussion) are used for information visualization of either data gathered by a single grayscale channel or data not depicting parts of the electromagnetic spectrum (e.g. elevation in relief maps or tissue types in magnetic resonance imaging).
To understand false color, a look at the concept behind true color is helpful. An image is called a "true-color" image when it offers a natural color rendition, or when it comes close to it. This means that the colors of an object in an image appear to a human observer the same way as if this observer was to directly view the object: A green tree appears green in the image, a red apple red, a blue sky blue, and so on. When applied to black-and-white images, true-color means that the perceived lightness of a subject is preserved in its depiction.
Absolute true-color rendering is impossible. There are three major sources of color error ("metameric failure"):
The result of a metameric failure would be for example an image of a green tree which shows a different shade of green than the tree itself, a different shade of red for a red apple, a different shade of blue for the blue sky, and so on. Color management (e.g. with ICC profiles) can be used to mitigate this problem within the physical constraints.
Approximate true-color images gathered by spacecraft are an example where images have a certain amount of metameric failure, as the spectral bands of a spacecraft's camera are chosen to gather information on the physical properties of the object under investigation, and are not chosen to capture true-color images.