*** Welcome to piglix ***

Trophic state index


The quantities of nitrogen, phosphorus, and other biologically useful nutrients are the primary determinants of a body of water's trophic state index (TSI). Nutrients such as nitrogen and phosphorus tend to be limiting resources in standing water bodies, so increased concentrations tend to result in increased plant growth, followed by corollary increases in subsequent trophic levels. Consequently, a body of water's trophic index may sometimes be used to make a rough estimate of its biological condition. Although the term "trophic index" is commonly applied to lakes, any surface water body may be indexed.

Carlson's index is one of the more commonly used trophic indices and is the trophic index used by the United States Environmental Protection Agency. The trophic state is defined as the total weight of biomass in a given water body at the time of measurement. Because they are of public concern, the Carlson index uses the algal biomass as an objective classifier of a lake or other water body's trophic status. According to the US EPA, the Carlson Index should only be used with lakes that have relatively few rooted plants and non-algal turbidity sources.

Because they tend to correlate, three independent variables can be used to calculate the Carlson Index: chlorophyll pigments, total phosphorus and Secchi depth. Of these three, chlorophyll will probably yield the most accurate measures, as it is the most accurate predictor of biomass. Phosphorus may be a more accurate estimation of a water body's summer trophic status than chlorophyll if the measurements are made during the winter. Finally, the Secchi depth is probably the least accurate measure, but also the most affordable and expedient one. Consequently, citizen monitoring programs and other volunteer or large-scale surveys will often use the Secchi depth. By translating the Secchi transparency values to a log base 2 scale, each successive doubling of biomass is represented as a whole integer index number. The Secchi depth, which measures water transparency, indicates the concentration of dissolved and particulate material in the water, which in turn can be used to derive the biomass. This relationship is expressed in the following equation:

A lake is usually classified as being in one of three possible classes: oligotrophic, mesotrophic or eutrophic. Lakes with extreme trophic indices may also be considered hyperoligotrophic or hypereutrophic. The table below demonstrates how the index values translate into trophic classes.


...
Wikipedia

...