*** Welcome to piglix ***

Trilateration


In geometry, trilateration is the process of determining absolute or relative locations of points by measurement of distances, using the geometry of circles, spheres or triangles.

In addition to its interest as a geometric problem, trilateration does have practical applications in surveying and navigation, including global positioning systems (GPS). In contrast to triangulation, it does not involve the measurement of angles.

In two-dimensional geometry, it is known that if a point lies on two circles, then the circle centers and the two radii provide sufficient information to narrow the possible locations down to two. Additional information may narrow the possibilities down to one unique location.

In three-dimensional geometry, when it is known that a point lies on the surfaces of three spheres, then the centers of the three spheres along with their radii provide sufficient information to narrow the possible locations down to no more than two (unless the centers lie on a straight line).

This article describes a method for determining the intersections of three sphere surfaces given the centers and radii of the three spheres.

The intersections of the surfaces of three spheres is found by formulating the equations for the three sphere surfaces and then solving the three equations for the three unknowns, x, y, and z. To simplify the calculations, the equations are formulated so that the centers of the spheres are on the z = 0 plane. Also, the formulation is such that one center is at the origin, and one other is on the x-axis. It is possible to formulate the equations in this manner since any three non-collinear points lie on a unique plane. After finding the solution, it can be transformed back to the original three dimensional Cartesian coordinate system.

We start with the equations for the three spheres:

d is the x coordinate of point P2. You have to subtract it from x to get the length of the base of the triangle between the intersection and r2 (x, y, z are coordinates, not lengths).


...
Wikipedia

...