Exact algebraic expressions for trigonometric values are sometimes useful, mainly for simplifying solutions into radical forms which allow further simplification.
All trigonometric numbers – sines or cosines of rational multiples of 360° – are algebraic numbers (solutions of polynomial equations with integer coefficients); moreover they may be expressed in terms of radicals of complex numbers; but not all of these are expressible in terms of real radicals. When they are, they are expressible more specifically in terms of square roots.
All values of the sines, cosines, and tangents of angles at 3° increments are expressible in terms of square roots, using identities – the half-angle identity, the double-angle identity, and the angle addition/subtraction identity – and using values for 0°, 30°, 36°, and 45°. For an angle of an integer number of degrees that is not a multiple 3° (π/60 radians), the values of sine, cosine, and tangent cannot be expressed in terms of real radicals.
According to Niven's theorem, the only rational values of the sine function for which the argument is a rational number of degrees are 0, 1/2, 1, −1/2, and −1.