(Normal form) trembling hand perfect equilibrium | |
---|---|
A solution concept in game theory | |
Relationship | |
Subset of | Nash Equilibrium |
Superset of | Proper equilibrium |
Significance | |
Proposed by | Reinhard Selten |
Extensive-form trembling hand perfect equilibrium | |
---|---|
A solution concept in game theory | |
Relationship | |
Subset of | Subgame perfect equilibrium, Perfect Bayesian equilibrium, Sequential equilibrium |
Significance | |
Proposed by | Reinhard Selten |
Used for | Extensive form games |
In game theory, trembling hand perfect equilibrium is a refinement of Nash equilibrium due to Reinhard Selten. A trembling hand perfect equilibrium is an equilibrium that takes the possibility of off-the-equilibrium play into account by assuming that the players, through a "slip of the hand" or tremble, may choose unintended strategies, albeit with negligible probability.
First we define a perturbed game. A perturbed game is a copy of a base game, with the restriction that only totally mixed strategies are allowed to be played. A totally mixed strategy is a mixed strategy where every pure strategy is played with non-zero probability. This is the "trembling hands" of the players; they sometimes play a different strategy, other than the one they intended to play. Then we define a strategy set S (in a base game) as being trembling hand perfect if there is a sequence of perturbed games that converge to the base game in which there is a series of Nash equilibria that converge to S.
The game represented in the following normal form matrix has two pure strategy Nash equilibria, namely and . However, only is trembling-hand perfect.