*** Welcome to piglix ***

Travel lane


In the context of traffic control, a lane is part of a roadway (carriageway) that is designated for use by a single line of vehicles, to control and guide drivers and reduce traffic conflicts. Most public roads (highways) have at least two lanes, one for traffic in each direction, separated by lane markings. On multilane roadways and busier two-lane roads, lanes are designated with road surface markings. Major highways often have two multi-lane roadways separated by a median.

Some roads and bridges that carry very low volumes of traffic are less than 15 feet (4.6 m) wide, and are only a single lane wide. Vehicles travelling in opposite directions must slow or stop to pass each other. In rural areas, these are often called country lanes. In urban areas, alleys are often only one lane wide. Urban and suburban one lane roads are often designated for one-way traffic.

Lane capacity varies widely due to conditions such as neighboring lanes, lane width, elements next to the road, number of driveways, presence of parking, speed limits, number of heavy vehicles and so on – the range can be as low as 1000 passenger cars / hour to as high as 4800 passenger cars /hour but mostly falls between 1500 and 2400 passenger cars / hour.

While in general, wider lanes are associated with a reduction in crashes, in urban settings both narrow (less than 2.8 m) and wide (over 3.1~3.2 m) lanes increase crash risks. Wider lanes (over 3.3~3.4m) are associated with 33% higher impact speeds, as well as higher crash rates. Carrying capacity is also maximal at a width of 3 to 3.1 metres (9.8 to 10.2 ft), both for motor traffic and for bicycles. Pedestrian volume declines as lanes widen, and intersections with narrower lanes provide the highest capacity for bicycles. As lane width decreases, traffic speed diminishes.

Advocates for pedestrian and cyclist safety, and many new urbanists disagree with traditional thinking in traffic engineering, saying that safety and capacity are not adversely impacted by reducing lanes widths to as little as 10 feet (3.0 m). Moreover, wider travel lanes also increase exposure and crossing distance for pedestrians at intersections and midblock crossings. Wider lanes (over 3.3~3.4m) are associated with 33% higher impact speeds, as well as higher crash rates. Carrying capacity is also maximal at a width of 3 to 3.1 metres (9.8 to 10.2 ft), both for motor traffic and for bicycles. Pedestrian volume declines as lanes widen, and intersections with narrower lanes provide the highest capacity for bicycles. As lane width decreases, traffic speed diminishes.


...
Wikipedia

...