In chemistry, the term transition metal (or transition element) has three possible meanings:
English chemist Charles Bury (1890-1968) first used the word transition in this context in 1921, when he referred to a transition series of elements during the change of an inner layer of electrons (for example n=3 in the 4th row of the periodic table) from a stable group of 8 to one of 18, or from 18 to 32. These elements are now known as the d-block.
In the d-block the atoms of the elements have between 1 and 10 d electrons.
The elements of groups 4-11 are generally recognized as transition metals, justified by their typical chemistry, i.e. a large range of complex ions in various oxidation states, coloured complexes, and catalytic properties either as the element or as ions (or both). Sc and Y in Group 3 are also generally recognized as transition metals. However the elements La–Lu and Ac–Lr and Group 12 attract different definitions from different authors.
Zinc, cadmium, and mercury are generally excluded from the transition metals as they have the electronic configuration [ ]d10s2, with no incomplete d shell. In the oxidation state +2 the ions have the electronic configuration [ ] d10. However, these elements can exist in other oxidation states, including the +1 oxidation state, as in the diatomic ion Hg2+
2. The group 12 elements Zn, Cd and Hg may therefore, under certain rules, be classed as post-transition metals in this case. However, it is often convenient to include these elements in a discussion of the transition elements. For example, when discussing the crystal field stabilization energy of first-row transition elements, it is convenient to also include the elements calcium and zinc, as both Ca2+
and Zn2+
have a value of zero against which the value for other transition metal ions may be compared. Another example occurs in the Irving-Williams series of stability constants of complexes.