*** Welcome to piglix ***

Transaldolase

Transaldolase
Identifiers
EC number 2.2.1.2
CAS number 9014-46-4
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / EGO
Transaldolase
Transaldolaseribbon.jpg
Crystallographic structure of human transaldolase.
Identifiers
Symbol Transaldolase
Pfam PF00923
InterPro IPR001585
PROSITE PDOC00741
SCOP 1ucw
SUPERFAMILY 1ucw
transaldolase 1
Identifiers
Symbol TALDO1
Entrez 6888
HUGO 11559
OMIM 602063
RefSeq NM_006755
UniProt P37837
Other data
EC number 2.2.1.2
Locus Chr. 11 p15.5-15.4
transaldolase B
Identifiers
Symbol talB
Entrez 4199095
PDB 1onr
RefSeq NC_008245.1
UniProt P0A870
Other data
EC number 2.2.1.2

Transaldolase is an enzyme (EC 2.2.1.2) of the non-oxidative phase of the pentose phosphate pathway. In humans, transaldolase is encoded by the TALDO1 gene.

The following chemical reaction is catalyzed by transaldolase:

The pentose phosphate pathway has two metabolic functions: (1) generation of nicotinamide adenine dinucleotide phosphate (reduced NADPH), for reductive biosynthesis, and (2) formation of ribose, which is an essential component of ATP, DNA, and RNA. Transaldolase links the pentose phosphate pathway to glycolysis. In patients with deficiency of transaldolase, there's an accumulation of erythritol (from erythrose 4-phosphate), D-arabitol, and ribitol.

The deletion in 3 base pairs in the TALDO1 gene results in the absence of serine at position 171 of the transaldolase protein, which is part of a highly conserved region, suggesting that the mutation causes the transaldolase deficiency that is found in erythrocytes and lymphoblasts. The deletion of this amino acid can lead to liver cirrhosis and hepatosplenomegaly (enlarged spleen and liver) during early infancy. Transaldolase is also a target of autoimmunity in patients with multiple sclerosis.

Transaldolase is a single domain composed of 337 amino acids. The core structure is an α/β barrel, similar to other class I aldolases, made up of eight parallel β-sheets and seven α-helices. There are also seven additional α-helices that are not part of the barrel. Hydrophobic amino acids are located between the β-sheets in the barrel and the surrounding α-helices to contribute to packing, such as the area containing Leu-168, Phe-170, Phe-189, Gly-311, and Phe-315. In the crystal, human transaldolase forms a dimer, with the two subunits connected by 18 residues in each subunit. See mechanism to the left for details.


...
Wikipedia

...