Traction, or tractive force, is the force used to generate motion between a body and a tangential surface, through the use of dry friction, though the use of shear force of the surface is also commonly used.
Traction can also refer to the maximum tractive force between a body and a surface, as limited by available friction; when this is the case, traction is often expressed as the ratio of the maximum tractive force to the normal force and is termed the coefficient of traction (similar to coefficient of friction).
Traction is defined as: A physical process in which a tangential force is transmitted across an interface between two bodies through dry friction or an intervening fluid film resulting in motion, stoppage or the transmission of power(Copyright: "Mechanical Wear Fundamentals and Testing" by Raymond George Bayer)
In vehicle dynamics, tractive force is closely related to the terms tractive effort and drawbar pull, though all three terms have different definitions.
The coefficient of traction is defined as the usable force for traction divided by the weight on the running gear (wheels, tracks etc.) i.e.:
Traction between two surfaces depends on several factors:
In the design of wheeled or tracked vehicles, high traction between wheel and ground is more desirable than low traction, as it allows for higher acceleration (including cornering and braking) without wheel slippage. One notable exception is in the motorsport technique of drifting, in which rear-wheel traction is purposely lost during high speed cornering.
Other designs dramatically increase surface area to provide more traction than wheels can, for example in continuous track and half-track vehicles. A tank or similar tracked vehicle uses tracks to reduce the pressure on the areas of contact. A 70-ton M1A2 would sink to the point of high centering if it used round tires. The tracks spread the 70 tons over a much larger area of contact than tires would and allow the tank to travel over much softer land.