*** Welcome to piglix ***

Trace (psycholinguistics)


TRACE is a connectionist model of speech perception, proposed by James McClelland and Jeffrey Elman in 1986. TRACE was made into a working computer program for running perceptual simulations. These simulations are predictions about how a human mind/brain processes speech sounds and words as they are heard in real time.

TRACE was created during the formative period of connectionism, and was included as a chapter in Parallel Distributed Processing: Explorations in the Microstructures of Cognition. The researchers found that certain problems regarding speech perception could be conceptualized in terms of a connectionist interactive activation model. The problems were that (1) speech is extended in time, (2) the sounds of speech (phonemes) overlap with each other, (3) the articulation of a speech sound is affected by the sounds that come before and after it, and (4) there is natural variability in speech (e.g. foreign accent) as well as noise in the environment (e.g. busy restaurant). Each of these causes the speech signal to be complex and often ambiguous, making it difficult for the human mind/brain to decide what words it is really hearing. In very simple terms, an interactive activation model solves this problem by placing different kinds of processing units (phonemes, words) in isolated layers, allowing activated units to pass information between layers, and having units within layers compete with one another, until the “winner” is considered “recognized” by the model.

A simulation of speech perception involves presenting the TRACE computer program with mock speech input, running the program, and generating a result. A successful simulation indicates that the result is found to be meaningfully similar to how people process speech.

It is generally accepted in psycholinguistics that (1) when the beginning of a word is heard, a set of words that share the same initial sound become activated in memory, (2) the words that are activated compete with each other while more and more of the word is heard, (3) at some point, due to both the auditory input and the lexical competition, one word is recognized.

For example, a listener hears the beginning of bald, and the words bald, ball, bad, bill become active in memory. Then, soon after, only bald and ball remain in competition (bad, bill have been eliminated because the vowel sound doesn't match the input). Soon after, bald is recognized. TRACE simulates this process by representing the temporal dimension of speech, allowing words in the lexicon to vary in activation strength, and by having words compete during processing. Figure 1 shows a line graph of word activation in a simple TRACE simulation.


...
Wikipedia

...