The Touchard polynomials, studied by Jacques Touchard (1939), also called the exponential polynomials or Bell polynomials, comprise a polynomial sequence of binomial type defined by
where is a Stirling number of the second kind, i.e., the number of partitions of a set of size n into k disjoint non-empty subsets.
The value at 1 of the nth Touchard polynomial is the nth Bell number, i.e., the number of partitions of a set of size n:
If X is a random variable with a Poisson distribution with expected value λ, then its nth moment is E(Xn) = Tn(λ), leading to the definition:
Using this fact one can quickly prove that this polynomial sequence is of binomial type, i.e., it satisfies the sequence of identities:
The Touchard polynomials constitute the only polynomial sequence of binomial type with the coefficient of x equal 1 in every polynomial.
The Touchard polynomials satisfy the Rodrigues-like formula:
The Touchard polynomials satisfy the recurrence relation