A topological quantum field theory (or topological field theory or TQFT) is a quantum field theory which computes topological invariants.
Although TQFTs were invented by physicists, they are also of mathematical interest, being related to, among other things, knot theory and the theory of four-manifolds in algebraic topology, and to the theory of moduli spaces in algebraic geometry. Donaldson, Jones, Witten, and Kontsevich have all won Fields Medals for work related to topological field theory.
In condensed-matter physics, topological quantum field theories are the low-energy effective theories of topologically ordered states, such as fractional quantum Hall states, string-net condensed states, and other strongly correlated quantum liquid states.
In a topological field theory, the correlation functions do not depend on the metric of spacetime. This means that the theory is not sensitive to changes in the shape of spacetime; if the spacetime warps or contracts, the correlation functions do not change. Consequently, they are topological invariants.
Topological field theories are not very interesting on the flat Minkowski spacetime used in particle physics. Minkowski space can be contracted to a point, so a TQFT on Minkowski space computes only trivial topological invariants. Consequently, TQFTs are usually studied on curved spacetimes, such as, for example, Riemann surfaces. Most of the known topological field theories are defined on spacetimes of dimension less than five. It seems that a few higher-dimensional theories exist, but they are not very well understood.