Tire-derived fuel (TDF) is composed of shredded scrap tires. Tires may be mixed with coal or other fuels, such as wood or chemical wastes, to be burned in concrete kilns, power plants, or paper mills. An EPA test program concluded that, with the exception of zinc emissions, potential emissions from TDF are not expected to be very much different from other conventional fossil fuels, as long as combustion occurs in a well-designed, well-operated and well-maintained combustion device.
Historically, there has not been any volume use for scrap tires other than burning that has been able to keep up with the volume of waste generated yearly. Tires produce the same energy as petroleum and approximately 25% more energy than coal. Burning tires is lower on the hierarchy of reducing waste than recycling, but it is better than placing the tire waste in a landfill or dump, where there is a possibility for uncontrolled tire fires or the harboring of disease vectors such as mosquitoes. Tire Derived Fuel is an interim solution to the scrap tire waste problem. Advances in tire recycling technology might one day provide a solution other than burning by reusing tire derived material in high volume applications.
Tire derived fuel is usually consumed in the form of shredded or chipped material with most of the metal wire from the tire's steel belts removed. The analytical properties of this refined material are published in TDF Produced From Scrap Tires with 96+% Wire Removed
Tires are typically composed of about 1 to 1.5% Zinc oxide, which is a well known component used in the manufacture of tires and is also toxic to aquatic and plant life. The chlorine content in tires is due primarily to the chlorinated butyl rubber liner that slows the leak rate of air. The Rubber Manufacturers Association (RMA) is a very good source for compositional data and other information on tires. The use of TDF for heat production is controversial due to the possibility for toxin production. Reportedly, polychlorinated dibenzodioxins and furans are produced during the combustion process and there is supportive evidence to suggest that this is true under some incineration conditions. Other toxins such as NOx, SOx and heavy metals are also produced, though whether these levels of toxins are higher or lower than conventional coal and oil fired incinerators is not clear.