Timothy M. Swager | |
---|---|
Born | Timothy Manning Swager July 1, 1961 Sheridan Montana |
Residence | Cambridge, Massachusetts |
Citizenship | American |
Nationality | American |
Fields | Chemistry, Materials science, Polymer science |
Institutions | University of Pennsylvania, Massachusetts Institute of Technology |
Education |
Montana State University (B.S.) (1983) California Institute of Technology (Ph.D.) (1988) |
Thesis | Precursor routes to conducting polymers from the ring-opening metathesis polymerization of cyclic olefins. (1988) |
Doctoral advisor | Robert H. Grubbs |
Other academic advisors | Mark S. Wrighton |
Website https://swagergroup.mit.edu/ |
Montana State University (B.S.) (1983)
Timothy M. Swager (born 1961) is an American Scientist and the John D. MacArthur Professor of Chemistry at the Massachusetts Institute of Technology and the director of the Deshpande Center for Technological Innovation. His research is at the interface of chemistry and materials science, with specific interests in carbon nanomaterials, polymers, and liquid crystals. He is a member of the National Academy of Sciences and American Academy of Arts and Sciences.
A native of Sheridan Montana, Swager earned his B.S. in Chemistry from Montana State University, received a Ph.D. from the California Institute of Technology working with Robert H. Grubbs, and performed postdoctoral studies at the Massachusetts Institute of Technology under Mark S. Wrighton. He began as an Assistant Professor at the University of Pennsylvania in 1990 and returned to MIT in 1996 as a Full Professor. Swager is best known for advancing new chemical sensing concepts based on molecular electronic principles. He introduced the concepts of charge and energy transport through molecular and nanowires as a method to create amplified signals to chemical events. These methods gave rise to the sensitive explosive sensors that have been commercialized under the trade name Fido. He demonstrated the integration of molecular recognition into chemiresistive sensors, first with conducting polymers and later with carbon nanotubes, and these methods were commercialized by C2Sense.