*** Welcome to piglix ***

Time-space tradeoff


A space-time or time-memory tradeoff in computer science is a case where an algorithm or program trades increased space usage with decreased time. Here, space refers to the data storage consumed in performing a given task (RAM, HDD, etc), and time refers to the time consumed in performing a given task (computation time or response time).

The utility of a given space-time tradeoff is affected by related fixed and variable costs (of, e.g., CPU speed, storage space), and is subject to diminishing returns.

Biological usage of time–memory tradeoffs can be seen in the earlier stages of animal behavior. Using stored knowledge or encoding stimuli reactions as "instincts" in the DNA avoids the need for "calculation" in time-critical situations. More specific to computers, look-up tables have been implemented since the very earliest operating systems.

In 1980 Martin Hellman first proposed using a time–memory tradeoff for cryptanalysis.

The most common situation is an algorithm involving a lookup table: an implementation can include the entire table, which reduces computing time, but increases the amount of memory needed, or it can compute table entries as needed, increasing computing time, but reducing memory requirements.

A space–time tradeoff can be applied to the problem of data storage. If data is stored uncompressed, it takes more space but access takes less time than if the data were stored compressed (since compressing the data reduces the amount of space it takes, but it takes time to run the decompression algorithm). Depending on the particular instance of the problem, either way is practical. There are also rare instances where it is possible to directly work with compressed data, such as in the case of compressed bitmap indices, where it is faster to work with compression than without compression.


...
Wikipedia

...