Tidal locking (also called gravitational locking or captured rotation) occurs when, over the course of an orbit, there is no net transfer of angular momentum between an astronomical body and its gravitational partner. This state can result from the gravitational gradient (tidal force) between two co-orbiting bodies, acting over a sufficiently long period of time. In the case where the orbital eccentricity is exactly zero, tidal locking results in one hemisphere of the revolving object constantly facing its partner, an effect known as synchronous rotation. For example, the same side of the Moon always faces the Earth, although there is some libration because the Moon's orbit is not perfectly circular. A tidally locked body in synchronous rotation takes just as long to rotate around its own axis as it does to revolve around its partner.
Usually, only the satellite is tidally locked to the larger body. However, if both the mass difference between the two bodies and the distance between them are relatively small, each may be tidally locked to the other; this is the case for Pluto and Charon.
This effect is employed to stabilize some artificial satellites.
The possibility of lifeforms existing on tidally-locked planets has been debated.
The change in rotation rate necessary to tidally lock a body B to a larger body A is caused by the torque applied by A's gravity on bulges it has induced on B by tidal forces.
The gravity of body A produces a tidal force on B that distorts its gravitational equilibrium shape slightly so that it becomes elongated along the axis oriented toward A, and conversely, is slightly reduced in dimension in directions orthogonal to this axis. These distortions are known as tidal bulges. When B is not yet tidally locked, the bulges travel over its surface, with one of the two "high" tidal bulges traveling close to the point where body A is overhead. For large astronomical bodies that are nearly spherical due to self-gravitation, the tidal distortion produces a slightly prolate spheroid, i.e. an axially symmetric ellipsoid that is elongated along its major axis. Smaller bodies also experience distortion, but this distortion is less regular.