A thermoreceptor is a non-specialised sensory receptor, or more accurately the receptive portion of a sensory neuron, that codes absolute and relative changes in temperature, primarily within the innocuous range. In the mammalian peripheral nervous system, warmth receptors are thought to be unmyelinated C-fibres (low conduction velocity), while those responding to cold have both C-fibers and thinly myelinated A delta fibers (faster conduction velocity). The adequate stimulus for a warm receptor is warming, which results in an increase in their action potential discharge rate. Cooling results in a decrease in warm receptor discharge rate. For cold receptors their firing rate increases during cooling and decreases during warming. Some cold receptors also respond with a brief action potential discharge to high temperatures, i.e. typically above 45°C, and this is known as a paradoxical response to heat. The mechanism responsible for this behavior has not been determined.
In humans, temperature sensation enters the spinal cord along the axons of Lissauer's tract that synapse on second order neurons in grey matter of the dorsal horn, one or two vertebral levels up. The axons of these second order neurons then decussate, joining the spinothalamic tract as they ascend to neurons in the ventral posterolateral nucleus of the thalamus.
In mammals, temperature receptors innervate various tissues including the skin (as cutaneous receptors), cornea and urinary bladder. Neurons from the pre-optic and hypothalamic regions of the brain that respond to small changes in temperature have also been described, providing information on core temperature. The hypothalamus is involved in thermoregulation, the thermoreceptors allowing feed-forward responses to a predicted change in core body temperature in response to changing environmental conditions.