*** Welcome to piglix ***

Thermococcus litoralis

Thermococcus litoralis
Scientific classification
Domain: Archaea
Phylum: Euryarchaeota
Class: Thermococci
Order: Thermococcales
Family: Thermococcaceae
Genus: Thermococcus
Species: T. litoralis
Binomial name
Thermococcus litoralis

Thermococcus litoralis (T. litoralis) is a species of Archaea that is found around deep-sea hydrothermal vents as well as shallow submarine thermal springs and oil wells. It is an anaerobic organotroph hyperthermophile that is between 0.5–3.0 µm in diameter. Like the other species in the order thermococcales, T. litoralis is an irregular hyperthermophile coccus that grows between 55–100 °C. Unlike many other thermococci, T. litoralis is non-motile. Its cell wall consists only of a single S-layer that does not form hexagonal lattices. Additionally, while many thermococcales obligately use sulfur as an electron acceptor in metabolism, T. litoralis only needs sulfur to help stimulate growth, and can live without it.T. litoralis has recently been popularized by the scientific community for its ability to produce an alternative DNA polymerase to the commonly used Taq polymerase. The T. litoralis polymerase, dubbed the vent polymerase, has been shown to have not only a lower error rate then Taq but also has proofreading 3’-5’ exonuclease abilities.

The DNA polymerase of Thermococcus litoralis is stable at high temperatures, with a half-life of 8 hours at 95 °C and 2 hours at 100 °C. It also has a proofreading activity that is able to reduce mutation frequencies to a level 2-4 times lower than most non-proofreading DNA polymerases.

T. litoralis grows near shallow and deep sea hydrothermal vents in extremely hot water. The optimal growth temperature for T. litoralis is 85–88 °C. It also prefers slightly acidic waters, growing between pH 4.0 to 8.0 with the optimal pH between 6.0–6.4. Unlike many other hyperthermophiles, T. litoralis is only facultatively dependent on sulfur as a final electron acceptor in fermentation, producing hydrogen gas in its absence and hydrogen sulfide when present. Additionally, T. litoralis has been shown to produce an exopolysaccharide (EPS) that could possibly help it form a biofilm. It is made of mannose, sulfites, and phosphorus.


...
Wikipedia

...