In the statistical mechanics of quantum mechanical systems and quantum field theory, the properties of a system in thermal equilibrium can be described by a mathematical object called a Kubo-Martin-Schwinger state or, more commonly, a KMS state: a state satisfying the KMS condition. Kubo (1957) introduced the condition, Martin & Schwinger (1959) used it to define thermodynamic Greens functions, and Rudolf Haag, M. Winnink, and N. M. Hugenholtz (1967) used the condition to define equilibrium states and called it the KMS condition.
The simplest case to study is that of a finite-dimensional Hilbert space, in which one does not encounter complications like phase transitions or spontaneous symmetry breaking. The density matrix of a thermal state is given by
where H is the Hamiltonian operator and N is the particle number operator (or charge operator, if we wish to be more general) and
is the partition function. We assume that N commutes with H, or in other words, that particle number is conserved.
In the Heisenberg picture, the density matrix does not change with time, but the operators are time-dependent. In particular, translating an operator A by τ into the future gives the operator