*** Welcome to piglix ***

Theory of special relativity


In physics, special relativity (SR, also known as the special theory of relativity or STR) is the generally accepted and experimentally well-confirmed physical theory regarding the relationship between space and time. In Albert Einstein's original pedagogical treatment, it is based on two postulates:

It was originally proposed in 1905 by Albert Einstein in the paper "On the Electrodynamics of Moving Bodies". The inconsistency of Newtonian mechanics with Maxwell's equations of electromagnetism and the lack of experimental confirmation for a hypothesized luminiferous aether led to the development of special relativity, which corrects mechanics to handle situations involving motions at a significant fraction of the speed of light (known as relativistic velocities). As of today, special relativity is the most accurate model of motion at any speed when gravitational effects are negligible. Even so, the Newtonian mechanics model is still useful (due to its simplicity and high accuracy) as an approximation at small velocities relative to the speed of light.

Not until Einstein developed general relativity, to incorporate general (or accelerated) frames of reference and gravity, was the phrase "special relativity" employed. A translation that has often been used is "restricted relativity"; "special" really means "special case".

Special relativity implies a wide range of consequences, which have been experimentally verified, including length contraction, time dilation, relativistic mass, mass–energy equivalence, a universal speed limit and relativity of simultaneity. It has replaced the conventional notion of an absolute universal time with the notion of a time that is dependent on reference frame and spatial position. Rather than an invariant time interval between two events, there is an invariant spacetime interval. Combined with other laws of physics, the two postulates of special relativity predict the equivalence of mass and energy, as expressed in the mass–energy equivalence formula E = mc2, where c is the speed of light in a vacuum.


...
Wikipedia

...