*** Welcome to piglix ***

Theorema egregium


Gauss's Theorema Egregium (Latin for "Remarkable Theorem") is a foundational result in differential geometry proved by Carl Friedrich Gauss that concerns the curvature of surfaces. The theorem says that the Gaussian curvature of a surface does not change if one bends the surface without stretching it. In other words, Gaussian curvature can be determined entirely by measuring angles, distances and their rates on the surface itself, without further reference to the particular way in which the surface is embedded in the ambient 3-dimensional Euclidean space. Thus the Gaussian curvature is an intrinsic invariant of a surface.

Gauss presented the theorem in this way (translated from Latin):

The theorem is "remarkable" because the starting definition of Gaussian curvature makes direct use of position of the surface in space. So it is quite surprising that the result does not depend on its embedding in spite of all bending and twisting deformations undergone.

In modern mathematical language, the theorem may be stated as follows:

A sphere of radius R has constant Gaussian curvature which is equal to 1/R2. At the same time, a plane has zero Gaussian curvature. As a corollary of Theorema Egregium, a piece of paper cannot be bent onto a sphere without crumpling. Conversely, the surface of a sphere cannot be unfolded onto a flat plane without distorting the distances. If one were to step on an empty egg shell, its edges have to split in expansion before being flattened. Mathematically speaking, a sphere and a plane are not isometric, even locally. This fact is of enormous significance for cartography: it implies that no planar (flat) map of Earth can be perfect, even for a portion of the Earth's surface. Thus every cartographic projection necessarily distorts at least some distances.

The catenoid and the helicoid are two very different-looking surfaces. Nevertheless, each of them can be continuously bent into the other: they are locally isometric. It follows from Theorema Egregium that under this bending the Gaussian curvature at any two corresponding points of the catenoid and helicoid is always the same. Thus isometry is simply bending and twisting of a surface without internal crumpling or tearing, in other words without extra tension, compression, or shear.


...
Wikipedia

...