In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running or continue to run forever.
Alan Turing proved in 1936 that a general algorithm to solve the halting problem for all possible program-input pairs cannot exist. A key part of the proof was a mathematical definition of a computer and program, which became known as a Turing machine; the halting problem is undecidable over Turing machines. It is one of the first examples of a decision problem.
Informally, for any program f that might determine if programs halt, a "pathological" program g called with an input can pass its own source and its input to f and then specifically do the opposite of what f predicts g will do. No f can exist that handles this case.
Jack Copeland (2004) attributes the term halting problem to Martin Davis.
The halting problem is a decision problem about properties of computer programs on a fixed Turing-complete model of computation, i.e., all programs that can be written in some given programming language that is general enough to be equivalent to a Turing machine. The problem is to determine, given a program and an input to the program, whether the program will eventually halt when run with that input. In this abstract framework, there are no resource limitations on the amount of memory or time required for the program's execution; it can take arbitrarily long, and use an arbitrary amount of storage space, before halting. The question is simply whether the given program will ever halt on a particular input.
For example, in pseudocode, the program
does not halt; rather, it goes on forever in an infinite loop. On the other hand, the program
does halt.
While deciding whether these programs halt is simple, more complex programs prove problematic.