The Grammar of Science is a book by Karl Pearson first published in hardback in 1892. In 1900, the second edition, published by Adam & Charles Black, appeared. The third, revised, edition was also published by Adam & Charles Black in 1911. It was recommended by Einstein to his friends of the Olympia Academy. Several themes were covered in this book that later became part of the theories of Einstein and other scientists, such as:
"Introductory - The Scope and Method of Science"
"The Facts of Science"
"The Scientific Law"
"Cause and Effect - Probability"
"Contingency and Correlation - The Insufficiency of Causation"
"Space and Time"
"The Geometry of Motion"
"Matter"
The notion of matter is found to be equally obscure whether we seek for definition in the writings of physicists or of "common sense" philosophers. The difficulties with regard to it appear to arise from asserting the phenomenal but imperceptible existence of mere conceptual symbols. Change of sense-impression is the proper term for external perception. Motion is the proper term for our conceptual symbolisation of this change. Of perception the question "what moves" and "why it moves" are seen to be idle. In the field of conception, the moving bodies are geometrical ideals with merely descriptive motions.
In order to understand that we can perceive change of sense-impression but we can only conceive motion, three questions must be asked: "What moves? Why does it move? How does it move?". Science can only answer the question "How does it move?". The others are unintelligible, because we find that matter, force, and "action at a distance" are not terms which express real problems of the phenomenal world.
"The Laws of Motion"
The physicist forms a conceptual model of the universe by the aid of corpuscles. These corpuscles are only symbols for the component parts of perceptual bodies and are not to be considered as in any way resembling definite perceptual equivalents. The corpuscles with which we have to deal are ether-element, prime-atom, atom, molecule, and particle. We conceive them to move in the manner which enables us most accurately to describe the sequences of our sense-impressions. This manner of motion is summed up in the so-called laws of motion. These laws hold in the first place for particles, but they have been frequently assumed to be true for all corpuscles. It is more reasonable, however, to conceive that a great part of mechanism flows from the structure of gross "matter."
The proper measure of mass is found to be a ratio of mutual accelerations, and force is seen to be a certain convenient measure of motion, and not its cause. The customary definitions of mass and force, as well as the Newtonian statement of the laws of motion, are shown to abound in metaphysical obscurities. It is also questionable whether the principles involved in the current statements as to the superposition and combination of forces are scientifically correct when applied to atoms and molecules. The hope for future progress lies in clearer conceptions of the nature of ether and of the structure of gross "matter."