Cover
|
|
Author | Fred Adams and Gregory Laughlin |
---|---|
Country | United States |
Language | English |
Genre | Popular science |
Publisher | Free Press Publishers |
Publication date
|
1999 |
Media type | |
Pages | 251 pp. |
ISBN | |
OCLC | 44402328 |
The Five Ages of the Universe is a popular science book written by Professor Fred Adams and Professor Gregory P. Laughlin about the future of an expanding universe first published in 1999.
The book The Five Ages of the Universe discusses the history, present state, and probable future of the universe, according to cosmologists' current understanding. The book divides the timeline of the universe into five eras: the Era, the Stelliferous Era, the Degenerate Era, the Black Hole Era and the Dark Era.
In addition to explaining current cosmological theory, the authors speculate on what kinds of life might exist in future eras of the universe. The speculation is based on a scaling hypothesis, credited to Freeman Dyson, the idea being, that all other things being equal the rate of metabolism—and therefore rate of consciousness—of an organism should be in direct proportion to the temperature at which that organism thrives. The authors envision life forms completely different from the biochemical ones of Earth, for example, based on net-worked black holes.
The time scales treated in the book are sufficiently vast, that, the authors find it convenient to use scientific notation. They refer to the "nth cosmological decade," meaning 10n years after the Big Bang. In what follows, n refers to the cosmological decade.
The Primordial Era is defined as "−50 < n < 5". In this era, the Big Bang, the subsequent inflation, and Big Bang nucleosynthesis are thought to have taken place. Toward the end of this age, the recombination of electrons with nuclei made the universe transparent for the first time. The authors discuss the horizon and flatness problems.
The Stelliferous Era, is defined as, "6 < n < 14". This is the current era, in which matter is arranged in the form of stars, galaxies, and galaxy clusters, and most energy is produced in stars. Massive stars use up their fuel very rapidly, in as little as a few million years. Eventually, the only stars remaining will be white dwarf stars. By the end of this era, bright stars as we know them will be gone, their nuclear fuel exhausted, and only white dwarfs, brown dwarfs, neutron stars and black holes will remain. In this section, Olbers' paradox is discussed.