In music theory, traditionally, a tetrachord (Greek: τετράχορδoν, Latin: tetrachordum) is a series of four notes ("chords", from the Greek chordon, "string" or "note") separated by three smaller intervals that span the interval of a perfect fourth, a 4:3 frequency proportion. In modern usage a tetrachord is any four-note segment of a scale or tone row, not necessarily related to a particular system of tuning.
The term tetrachord derives from ancient Greek music theory, where it signified a segment of the Greater and Lesser Perfect Systems bounded by unmovable notes (Greek: ἑστῶτες); the notes between these were movable (Greek: κινούμενοι). It literally means four strings, originally in reference to harp-like instruments such as the lyre or the kithara, with the implicit understanding that the four strings produced adjacent (i.e. conjunct) notes.
Modern music theory makes use of the octave as the basic unit for determining tuning: ancient Greeks used the tetrachord for this purpose. Ancient Greek theorists recognized that the octave is a fundamental interval, but saw it as built from two tetrachords and a whole tone.
Ancient Greek music theory distinguishes three genera (singular: genus) of tetrachords. These genera are characterized by the largest of the three intervals of the tetrachord:
Whatever the tuning of the tetrachord, its four degrees are named, in ascending order, hypate, parhypate, lichanos (or hypermese), and mese and, for the second tetrachord in the construction of the system, paramese, trite, paranete, and nete. The hypate and mese, and the paramese and nete are "unmovable", fixed a perfect fourth apart, while the position of the parhypate and lichanos, or trite and paranete, are movable.