Space tethers are long cables which can be used for propulsion, momentum exchange, stabilization and altitude control, or maintaining the relative positions of the components of a large dispersed satellite/spacecraft sensor system. Depending on the mission objectives and altitude, spaceflight using this form of spacecraft propulsion may be significantly less expensive than spaceflight using rocket engines.
Tether satellites can be used for various purposes, including research into tether propulsion, tidal stabilization and orbital plasma dynamics. Four main techniques for employing space tethers are in development:
Universal Orbital Support System
Many uses for space tethers have been proposed, including deployment as space elevators, as skyhooks, and for doing propellant-free orbital transfers.
Konstantin Tsiolkovsky once proposed a tower so tall that it reached into space, so that it would be held there by the rotation of the Earth. However, at the time, there was no realistic way to build it.
To try to solve the problems in Komsomolskaya Pravda (July 31, 1960), another Russian, Yuri Artsutanov, wrote in greater detail about the idea of a tensile cable to be deployed from a geosynchronous satellite, downwards towards the ground, and upwards away, keeping the cable balanced. This is the space elevator idea, a type of synchronous tether that would rotate with the earth. However, given the materials technology of the time, this too was impractical on Earth.