*** Welcome to piglix ***

Tests of special relativity


Special relativity is a physical theory that plays a fundamental role in the description of all physical phenomena, as long as gravitation is not significant. Many experiments played (and still play) an important role in its development and justification. The strength of the theory lies in its unique ability to correctly predict to high precision the outcome of an extremely diverse range of experiments. Repeats of many of those experiments are still being conducted with steadily increased precision, with modern experiments focusing on effects such as at the Planck scale and in the neutrino sector. Their results are consistent with the predictions of special relativity. Collections of various tests were given by Jakob Laub, Zhang, Mattingly,Clifford Will, and Roberts/Schleif.

Special relativity is restricted to flat spacetime, i.e., to all phenomena without significant influence of gravitation. The latter lies in the domain of general relativity and the corresponding tests of general relativity must be considered.

The predominant theory of light in the 19th century was that of the luminiferous aether, a stationary medium in which light propagates in a manner analogous to the way sound propagates through air. By analogy, it follows that the speed of light is constant in all directions in the aether and is independent of the velocity of the source. Thus an observer moving relative to the aether must measure some sort of "aether wind" even as an observer moving relative to air measures an apparent wind.

Beginning with the work of François Arago (1810), a series of optical experiments had been conducted, which should have given a positive result for magnitudes to first order in v/c and which thus should have demonstrated the relative motion of the aether. Yet the results were negative. An explanation was provided by Augustin Fresnel (1818) with the introduction of an auxiliary hypothesis, the so-called "dragging coefficient", that is, matter is dragging the aether to a small extent. This coefficient was directly demonstrated by the Fizeau experiment (1851). It was later shown that all first-order optical experiments must give a negative result due to this coefficient. In addition, also some electrostatic first order experiments were conducted, again having a negative results. In general, Hendrik Lorentz (1892, 1895) introduced several new auxiliary variables for moving observers, demonstrating why all first-order optical and electrostatic experiments have produced null results. For example, Lorentz proposed a location-variable by which electrostatic fields contract in the line of motion and another variable ("local time") by which the time coordinates for moving observers depend on their current location.


...
Wikipedia

...