A test probe is a physical device used to connect electronic test equipment to a device under test (DUT). Test probes range from very simple, robust devices to complex probes that are sophisticated, expensive, and fragile. Specific types include test prods, oscilloscope probes and current probes. A test probe is often supplied as a test lead, which includes the probe, cable and terminating connector.
Voltage probes are used to measure voltages present on the DUT. To achieve high accuracy, the test instrument and its probe must not significantly affect the voltage being measured. This is accomplished by ensuring that the combination of instrument and probe exhibit a sufficiently high impedance that will not load the DUT. For AC measurements, the reactive component of impedance may be more important than the resistive.
A typical voltmeter probe consists of a single wire test lead that has on one end a connector that fits the voltmeter and on the other end a rigid, tubular plastic section that comprises both a handle and probe body. The handle allows a person to hold and guide the probe without influencing the measurement (by becoming part of the electric circuit) or being exposed to dangerous voltages that might cause electric shock. Within the probe body, the wire is connected to a rigid, pointed metal tip that contacts the DUT. Some probes allow an alligator clip to be attached to the tip, thus enabling the probe to be attached to the DUT so that it need not be held in place.
Test leads are usually made with finely stranded wire to keep them flexible, of wire gauges sufficient to conduct a few amperes of electric current. The insulation is chosen to be both flexible and have a breakdown voltage higher than the voltmeter's maximum input voltage. The many fine strands and the thick insulation make the wire thicker than ordinary hookup wire.
Two probes are used together to measure voltage, current, and two-terminal components such as resistors and capacitors. When making DC measurements it is necessary to know which probe is positive and which is negative, so by convention the probes are colored red for positive and black for negative. Depending upon the accuracy required, they can be used with signal frequencies ranging from DC to a few kilohertz.