Test-driven development (TDD) is a software development process that relies on the repetition of a very short development cycle: requirements are turned into very specific test cases, then the software is improved to pass the new tests, only. This is opposed to software development that allows software to be added that is not proven to meet requirements.
Kent Beck, who is credited with having developed or 'rediscovered' the technique, stated in 2003 that TDD encourages simple designs and inspires confidence.
Test-driven development is related to the test-first programming concepts of extreme programming, begun in 1999, but more recently has created more general interest in its own right.
Programmers also apply the concept to improving and debugging legacy code developed with older techniques.
The following sequence is based on the book Test-Driven Development by Example.
In test-driven development, each new feature begins with writing a test. Write a test that defines a function or improvements of a function, which should be very succinct. To write a test, the developer must clearly understand the feature's specification and requirements. The developer can accomplish this through use cases and user stories to cover the requirements and exception conditions, and can write the test in whatever testing framework is appropriate to the software environment. It could be a modified version of an existing test. This is a differentiating feature of test-driven development versus writing unit tests after the code is written: it makes the developer focus on the requirements before writing the code, a subtle but important difference.
This validates that the test harness is working correctly, shows that the new test does not pass without requiring new code because the required behaviour already exists, and it rules out the possibility that the new test is flawed and will always pass. The new test should fail for the expected reason. This step increases the developer's confidence in the new test.
The next step is to write some code that causes the test to pass. The new code written at this stage is not perfect and may, for example, pass the test in an inelegant way. That is acceptable because it will be improved and honed in Step 5.