Temperature-responsive polymers or thermoresponsive polymers are polymers that exhibit a drastic and discontinuous change of their physical properties with temperature. The term is commonly used when the property concerned is solubility in a given solvent, but it may also be used when other properties are affected. Thermoresponsive polymers belong to the class of stimuli-responsive materials, in contrast to temperature-sensitive (for short, thermosensitive) materials, which change their properties continuously with environmental conditions. In a stricter sense, thermoresponsive polymers display a miscibility gap in their temperature-composition diagram. Depending on whether the miscibility gap is found at high or low temperatures, an upper or lower critical solution temperature exists, respectively (abbreviated UCST or LCST).
Research mainly focuses on polymers that show thermoresponsivity in aqueous solution. Promising areas of application are tissue engineering, liquid chromatography,drug delivery and bioseparation. Only a few commercial applications exist, for example, cell culture plates coated with an LCST-polymer.
The effects of external stimuli on particular polymers were investigated in the 1960s by Heskins and Guillet. They established 32 °C as the lower critical solution temperature (LCST) for poly(N-isopropyl arylamide).
Thermoresponsive polymer chains in solution adopt an expanded coil conformation. At the phase separation temperature they collapse to form compact globuli. This process can be observed directly by methods of static and dynamic light scattering. The drop in viscosity can be indirectly observed. When mechanisms which reduce surface tension are absent, the globules aggregate, subsequently causing turbidity and the formation of visible particles.
The phase separation temperature (and hence, the cloud point) is dependent on polymer concentration. Therefore, temperature-composition diagrams are used to display thermoresponsive behavior over a wide range of concentrations. Phases separate into a polymer-poor and a polymer-rich phase. In strictly binary mixtures the composition of the coexisting phases can be determined by drawing tie-lines. However, since polymers display a molar mass distribution this straightforward approach may be insufficient. During the process of phase separation the polymer-rich phase can vitrify before equilibrium is reached. This depends on the glass transition temperature for each individual composition. It is convenient to add the glass transition curve to the phase diagram, although it is no real equilibrium. The intersection of the glass transition curve with the cloud point curve is called Berghmans point. In the case of UCST polymers, above the Berghmans point the phases separate into two liquid phases, below this point into a liquid polymer-poor phase and a vitrified polymer-rich phase. For LCST polymers the inverse behavior is observed.