*** Welcome to piglix ***

Television technology


Large-screen television technology developed rapidly in the late 1990s and 2000s. Various thin screen technologies are being developed, but only the liquid crystal display (LCD), plasma display (PDP) and Digital Light Processing (DLP) have been released on the public market. These technologies have almost completely displaced cathode ray tubes (CRT) in television sales, due to the necessary bulkiness of cathode ray tubes. However, recently released technologies like organic light-emitting diode (OLED) and not-yet released technologies like surface-conduction electron-emitter display (SED) or field emission display (FED) are making their way to replace the first flat screen technologies in picture quality. The diagonal screen size of a CRT television is limited to about 40 inches because of the size requirements of the cathode ray tube, which fires three beams of electrons onto the screen, creating a viewable image. A larger screen size requires a longer tube, making a CRT television with a large screen (50 to 80 inches) unrealistic because of size. The aforementioned technologies can produce large-screen televisions that are much thinner.

Before deciding on a particular display technology size, it is very important to calculate at what distances it is going to be viewed from. As the display size increases so does the ideal viewing distance. Bernard J. Lechner, while working for RCA, studied the best viewing distances for various conditions and derived the so-called Lechner distance.

As a rule of thumb, the viewing distance should be roughly two to three times the screen size for standard definition (SD) displays.

The following are important factors for evaluating television displays:

A pixel on an LCD consists of multiple layers of components: two polarizing filters, two glass plates with electrodes, and liquid crystal molecules. The liquid crystals are sandwiched between the glass plates and are in direct contact with the electrodes. The two polarizing filters are the outer layers in this structure. The polarity of one of these filters is oriented horizontally, while the polarity of the other filter is oriented vertically. The electrodes are treated with a layer of polymer to control the alignment of liquid crystal molecules in a particular direction. These rod-like molecules are arranged to match the horizontal orientation on one side and the vertical orientation on the other, giving the molecules a twisted, helical structure. Twisted nematic liquid crystals are naturally twisted, and are commonly used for LCD’s because they react predictably to temperature variation and electric current.


...
Wikipedia

...