A tap changer is a mechanism in transformers which allows for variable turn ratios to be selected in discrete steps. Transformers with this mechanism obtain this variable turn ratio by connecting to a number access points known as taps along either the primary or secondary winding. These systems usually possess 33 taps (one at center "Rated" tap and sixteen to increase and decrease the turn ratio) and allow for ±10% variation (each step providing 0.625% variation) from the nominal transformer rating which, in turn, allows for stepped voltage regulation of the output.
Tap changers exist in two primary types, no load tap changers (NLTC) which must be de-energized before the turn ratio is adjusted and on load tap changers (OLTC) which may adjust their turn ratio during operation. The tap selection on any tap changer may be made via an automatic system, as is often the case for OLTC, or a manual tap changer, which is more common for NLTC. Additionally, tap changers are often placed on the high voltage (low current) transformer winding for easy access and to minimize the current load during operation.
Also called Off-Circuit Tap Changer, Off-Load Tap Changer, or De-Energized Tap Changer (DETC).
No load tap changers are often utilized in situations in which a transformer's turn ratio doesn't require frequent changing and it is permissible to de-energize the transformer system. This type of transformer is frequently employed in low power, low voltage transformers in which the tap point often may take the form of a transformer connection terminal, requiring the input line to be disconnected by hand and connected to the new terminal. Alternatively, in some systems, the process of tap changing may be assisted by means of a rotary or slider switch.
No load tap changers are also employed in high voltage transformers in which the system includes a no load tap changer on the primary winding to accommodate system variations within a narrow band around the nominal rating. In such systems, the tap changer will often be set just once, at the time of installation, although it may be changed later during a scheduled outage to accommodate a long-term change in the system voltage profile.
Also called On Circuit Tap Changer
For many power transformer applications, a supply interruption during a tap change is unacceptable, and the transformer is often fitted with a more expensive and complex on load tap changing (OLTC, sometimes Load Tap Changer, LTC) mechanism. On load tap changers may be generally classified as either mechanical, electronically assisted, or fully electronic.
A mechanical tap changer physically makes the new connection before releasing the old using multiple tap selector switches but avoids creating high circulating currents by using a diverter switch to temporarily place a large diverter impedance in series with the short-circuited turns. This technique overcomes the problems with open or short circuit taps. In a resistance type tap changer, the changeover must be made rapidly to avoid overheating of the diverter. A reactance type tap changer uses a dedicated preventive autotransformer winding to function as the diverter impedance, and a reactance type tap changer is usually designed to sustain off-tap loading indefinitely.