In the , Tanaka's formula states that
where Bt is the standard Brownian motion, sgn denotes the sign function
and Lt is its local time at 0 (the local time spent by B at 0 before time t) given by the L2-limit
Tanaka's formula is the explicit Doob–Meyer decomposition of the submartingale |Bt| into the martingale part (the integral on the right-hand side), and a continuous increasing process (local time). It can also be seen as the analogue of Itō's lemma for the (nonsmooth) absolute value function , with and ; see local time for a formal explanation of the Itō term.