In model theory, a discipline within the field of mathematical logic, a tame abstract elementary class is an abstract elementary class (AEC) which satisfies a locality property for types called tameness. Even though it appears implicitly in earlier work of Shelah, tameness as a property of AEC was first isolated by Grossberg and VanDieren, who observed that tame AECs were much easier to handle than general AECs.
Let K be an AEC with joint embedding, amalgamation, and no maximal models. Just like in first-order model theory, this implies K has a universal model-homogeneous monster model . Working inside , we can define a semantic notion of types by specifying that two elements a and b have the same type over some base model if there is an automorphism of the monster model sending a to b fixing pointwise (note that types can be defined in a similar manner without using a monster model). Such types are called Galois types.