*** Welcome to piglix ***

Takagi existence theorem


In class field theory, the Takagi existence theorem states that for any number field K there is a one-to-one inclusion reversing correspondence between the finite abelian extensions of K (in a fixed algebraic closure of K) and the generalized ideal class groups defined via a modulus of K.

It is called an existence theorem because a main burden of the proof is to show the existence of enough abelian extensions of K.

Here a modulus (or ray divisor) is a formal finite product of the valuations (also called primes or places) of K with positive integer exponents. The archimedean valuations that might appear in a modulus include only those whose completions are the real numbers (not the complex numbers); they may be identified with orderings on K and occur only to exponent one.

The modulus m is a product of a non-archimedean (finite) part mf and an archimedean (infinite) part m. The non-archimedean part mf is a nonzero ideal in the ring of integers OK of K and the archimedean part m is simply a set of real embeddings of K. Associated to such a modulus m are two groups of fractional ideals. The larger one, Im, is the group of all fractional ideals relatively prime to m (which means these fractional ideals do not involve any prime ideal appearing in mf). The smaller one, Pm, is the group of principal fractional ideals (u/v) where u and v are nonzero elements of OK which are prime to mf, uv mod mf, and u/v > 0 in each of the orderings of m. (It is important here that in Pm, all we require is that some generator of the ideal has the indicated form. If one does, others might not. For instance, taking K to be the rational numbers, the ideal (3) lies in P4 because (3) = (−3) and −3 fits the necessary conditions. But (3) is not in P4∞ since here it is required that the positive generator of the ideal is 1 mod 4, which is not so.) For any group H lying between Im and Pm, the quotient Im/H is called a generalized ideal class group.


...
Wikipedia

...