*** Welcome to piglix ***

T Tauri wind


The T Tauri wind — so named because of the young star currently in this stage—is a phenomenon indicative of the phase of stellar development between the accretion of material from the slowing rotating material of a solar nebula and the ignition of the hydrogen that has agglomerated into the protostar.

The protostar at first only has about 1% of its final mass. But the envelope of the star continues to grow as infalling material is accreted. After 10,000–100,000 years, thermonuclear fusion begins in its core, then a strong stellar wind is produced which stops the infall of new mass. The protostar is now considered a young star since its mass is fixed, and its future evolution is now set.

The T Tauri stars, with masses less than twice the mass of our Sun, are thought to follow this process:

Initially there is a random amount of interstellar gaseous matter, mainly hydrogen, containing traces of dusts (ices, carbon, rocks).

The main portion of emission continuum of Classic T Tauri Stars is formed outside the accretion shock, what means a great deal of accretion matter falls onto the star in nearly horizontal direction. This gas decelerate in turbulent layer near the star surface.

We suggest two scenarios to explain such nature of accretion: two-stream accretion (through boundary layer and magnetosphere) and magnetospheric accretion by way of streams, the bulk of matter in which falls onto the star in nearly horizontal direction.

Observations have provided quantitative parameters of disk wind, derived from the analysis of optical and UV spectra of CTTS. The matter outflows observed from a disk region with an outer radius of < 0.5 AU. The outflowing matter initially moves almost along the disk until being accelerated up to V > 100 km/s and only afterwards begins to collimate. Inner region of the wind is collimated into the jet at a distance <3 AU from the disk mid plain. The Vz gas velocity component in the jet decreases with increasing distance from the jet axis. The gas temperature in the jet bottom is less than 20,000 kelvins.


...
Wikipedia

...