*** Welcome to piglix ***

TDDFT


Time-dependent density functional theory (TDDFT) is a quantum mechanical theory used in physics and chemistry to investigate the properties and dynamics of many-body systems in the presence of time-dependent potentials, such as electric or magnetic fields. The effect of such fields on molecules and solids can be studied with TDDFT to extract features like excitation energies, frequency-dependent response properties, and photoabsorption spectra.

TDDFT is an extension of density functional theory (DFT), and the conceptual and computational foundations are analogous – to show that the (time-dependent) wave function is equivalent to the (time-dependent) electronic density, and then to derive the effective potential of a fictitious non-interacting system which returns the same density as any given interacting system. The issue of constructing such a system is more complex for TDDFT, most notably because the time-dependent effective potential at any given instant depends on value of the density at all previous times. Consequently, the development of time-dependent approximations for the implementation of TDDFT is behind that of DFT, with applications routinely ignoring this memory requirement.

The formal foundation of TDDFT is the Runge-Gross (RG) theorem (1984) – the time-dependent analogue of the Hohenberg-Kohn (HK) theorem (1964). The RG theorem shows that, for a given initial wavefunction, there is a unique mapping between the time-dependent external potential of a system and its time-dependent density. This implies that the many-body wavefunction, depending upon 3N variables, is equivalent to the density, which depends upon only 3, and that all properties of a system can thus be determined from knowledge of the density alone. Unlike in DFT, there is no general minimization principle in time-dependent quantum mechanics. Consequently, the proof of the RG theorem is more involved than the HK theorem.

Given the RG theorem, the next step in developing a computationally useful method is to determine the fictitious non-interacting system which has the same density as the physical (interacting) system of interest. As in DFT, this is called the (time-dependent) Kohn-Sham system. This system is formally found as the stationary point of an action functional defined in the Keldysh formalism.


...
Wikipedia

...