*** Welcome to piglix ***

Synthetic data


Synthetic data are "any production data applicable to a given situation that are not obtained by direct measurement" according to the McGraw-Hill Dictionary of Scientific and Technical Terms; where Craig S. Mullins, an expert in data management, defines production data as "information that is persistently stored and used by professionals to conduct business processes.".

The creation of synthetic data is an involved process of data anonymization; that is to say that synthetic data is a subset of anonymized data. Synthetic data is used in a variety of fields as a filter for information that would otherwise compromise the confidentiality of particular aspects of the data. Many times the particular aspects come about in the form of human information (i.e. name, home address, IP address, telephone number, social security number, credit card number, etc.).

Synthetic data are generated to meet specific needs or certain conditions that may not be found in the original, real data. This can be useful when designing any type of system because the synthetic data are used as a simulation or as a theoretical value, situation, etc. This allows us to take into account unexpected results and have a basic solution or remedy, if the results prove to be unsatisfactory. Synthetic data are often generated to represent the authentic data and allows a baseline to be set. Another use of synthetic data is to protect privacy and confidentiality of authentic data. As stated previously, synthetic data is used in testing and creating many different types of systems; below is a quote from the abstract of an article that describes a software that generates synthetic data for testing fraud detection systems that further explains its use and importance. "This enables us to create realistic behavior profiles for users and attackers. The data is used to train the fraud detection system itself, thus creating the necessary adaptation of the system to a specific environment."

The history of the generation of synthetic data dates back to 1993. In 1993, the idea of original fully synthetic data was created by Rubin. Rubin originally designed this to synthesize the Decennial Census long form responses for the short form households. He then released samples that did not include any actual long form records - in this he preserved anonymity of the household. Later that year, the idea of original partially synthetic data was created by Little. Little used this idea to synthesize the sensitive values on the public use file.

In 1994, Fienberg came up with the idea of critical refinement, in which he used a parametric posterior predictive distribution (instead of a Bayes bootstrap) to do the sampling. Later, other important contributors to the development of synthetic data generation were Trivellore Raghunathan, Jerry Reiter, Donald Rubin, John M. Abowd, and Jim Woodcock. Collectively they came up with a solution for how to treat partially synthetic data with missing data. Similarly they came up with the technique of Sequential Regression Multivariate Imputation.


...
Wikipedia

...