Coordinates: 53°20′35″N 02°38′26″W / 53.34306°N 2.64056°W
The Synchrotron Radiation Source (SRS) at the Daresbury Laboratory in Cheshire, England was the first second-generationsynchrotron radiation source to produce X-rays. The research facility provided synchrotron radiation to a large number (at one point 38) experimental stations and had an operating cost of approximately £20 million per annum.
SRS had been operated by the Science and Technology Facilities Council. The SRS was closed in August 2008 after 28 years of operation, and is being decommissioned, with no major plans for the re-use of the existing building.
Following the closure of the NINA synchrotron, construction of the facility commenced in 1975 and the first experiments were completed using the facility by 1981. In 1986 the storage was upgraded with additional focusing to increase the output brightness, the new 'lattice' being termed the HBL (High Brightness Lattice). Dr. John Walker won the 1997 Nobel Prize for Chemistry for his work on ATPase, for which he carried out studies on one of the SRS beamlines.
Like all second-generation sources, the SRS was designed to produce synchrotron radiation principally from its dipole magnets, but the initial design foresaw the use of a high-field insertion device to provide shorter-wavelength electromagnetic radiation to particular users. The first storage ring design was a 2 GeV FODO lattice (consisting of a basis of a focusing quadrupole, 'nothing' (often a bending magnet), a defocusing quadrupole and another length of 'nothing'; FOcus DefOcus) with one quadrupole per dipole (i.e. two dipoles per repeating cell), giving a natural beam emittance of around 1000 nm-rad with 16 cells. The HBL upgrade implemented in 1986 increased the total number of quadrupoles to 32, whilst retaining the same number of cells and geometry, and reduced the operating emittance to around 100 nm-rad in the so-called 'HIQ' (high tune) configuration. A 'LOQ' (low tune) configuration was also provided, to allow the efficient storage of one intense bunch of electrons (instead of up to 160), to provide radiation bursts at 3.123 MHz (the revolution frequency of the electrons, corresponding to the 96 m circumference).