*** Welcome to piglix ***

Symmetric tensor


In mathematics, a symmetric tensor is a tensor that is invariant under a permutation of its vector arguments:

for every permutation σ of the symbols {1,2,...,r}. Alternatively, a symmetric tensor of order r represented in coordinates as a quantity with r indices satisfies

The space of symmetric tensors of order r on a finite-dimensional vector space is naturally isomorphic to the dual of the space of homogeneous polynomials of degree r on V. Over fields of characteristic zero, the graded vector space of all symmetric tensors can be naturally identified with the symmetric algebra on V. A related concept is that of the antisymmetric tensor or alternating form. Symmetric tensors occur widely in engineering, physics and mathematics.

Let V be a vector space and

a tensor of order k. Then T is a symmetric tensor if

for the braiding maps associated to every permutation σ on the symbols {1,2,...,k} (or equivalently for every transposition on these symbols).

Given a basis {ei} of V, any symmetric tensor T of rank k can be written as

for some unique list of coefficients (the components of the tensor in the basis) that are symmetric on the indices. That is to say


...
Wikipedia

...