In mathematics, a symmetric tensor is a tensor that is invariant under a permutation of its vector arguments:
for every permutation σ of the symbols {1,2,...,r}. Alternatively, a symmetric tensor of order r represented in coordinates as a quantity with r indices satisfies
The space of symmetric tensors of order r on a finite-dimensional vector space is naturally isomorphic to the dual of the space of homogeneous polynomials of degree r on V. Over fields of characteristic zero, the graded vector space of all symmetric tensors can be naturally identified with the symmetric algebra on V. A related concept is that of the antisymmetric tensor or alternating form. Symmetric tensors occur widely in engineering, physics and mathematics.
Let V be a vector space and
a tensor of order k. Then T is a symmetric tensor if
for the braiding maps associated to every permutation σ on the symbols {1,2,...,k} (or equivalently for every transposition on these symbols).
Given a basis {ei} of V, any symmetric tensor T of rank k can be written as
for some unique list of coefficients (the components of the tensor in the basis) that are symmetric on the indices. That is to say