*** Welcome to piglix ***

Sylvester's criterion


In mathematics, Sylvester’s criterion is a necessary and sufficient criterion to determine whether a Hermitian matrix is positive-definite. It is named after James Joseph Sylvester.

Sylvester's criterion states that a Hermitian matrix M is positive-definite if and only if all the following matrices have a positive determinant:

In other words, all of the leading principal minors must be positive.

An analogous theorem holds for characterizing positive-semidefinite Hermitian matrices, except that it is no longer sufficient to consider only the leading principal minors: a Hermitian matrix M is positive-semidefinite if and only if all principal minors of M are nonnegative.

The proof is only for nonsingular Hermitian matrix with coefficients in , therefore only for nonsingular real-symmetric matrices.

Positive definite or semidefinite matrix: A symmetric matrix A whose eigenvalues are positive (λ > 0) is called positive definite, and when the eigenvalues are just nonnegative (λ ≥ 0), A is said to be positive semidefinite.


...
Wikipedia

...