Surface reconstruction refers to the process by which atoms at the surface of a crystal assume a different structure than that of the bulk. Surface reconstructions are important in that they help in the understanding of surface chemistry for various materials, especially in the case where another material is adsorbed onto the surface.
In an ideal infinite crystal, the equilibrium position of each individual atom is determined by the forces exerted by all the other atoms in the crystal, resulting in a periodic structure. If a surface is introduced to the system by terminating the crystal along a given plane, then these forces are altered, changing the equilibrium positions of the remaining atoms. This is most noticeable for the atoms at or near the surface plane, as they now only experience inter-atomic forces from one direction. This imbalance results in the atoms near the surface assuming positions with different spacing and/or symmetry from the bulk atoms, creating a different surface structure. This change in equilibrium positions near the surface can be categorized as either a relaxation or a reconstruction.
Relaxation refers to a change in the position of entire layers of atoms relative to the bulk positions. Often this is a purely normal relaxation: that is, the surface layers move in a direction normal to the surface plane, usually resulting in a smaller-than-usual inter-layer spacing. This makes intuitive sense, as a surface layer that experiences no forces from the open region can be expected to contract towards the bulk. Most metals experience this type of relaxation. Some surfaces also experience relaxations in the lateral direction as well as the normal, so that the upper layers become shifted relative to layers further in order to minimize the positional energy.
Reconstruction refers to a change in the two-dimensional structure of the surface layers, in addition to changes in the position of the entire layer. For example, in a cubic material the surface layer might re-structure itself to assume a smaller two-dimensional spacing between the atoms as lateral forces from adjacent layers are reduced. The general symmetry of a layer might also change, as in the case of the Pt (100) surface, which reconstructs from a cubic to a hexagonal structure. A reconstruction can affect one or more layers at the surface, and can either conserve the total number of atoms in a layer (a conservative reconstruction) or have a greater or lesser number than in the bulk (a non-conservative reconstruction).
The relaxations and reconstructions considered above would describe the ideal case of atomically clean surfaces in vacuum, in which the interaction with another medium is not considered. However, reconstructions can also be induced or affected by the adsorption of other atoms onto the surface as the interatomic forces are changed. These reconstructions can assume a variety of forms when the detailed interactions between different types of atoms are taken into account, but some general principles can be identified.