*** Welcome to piglix ***

Surface (geometry)


In mathematics, a surface is a generalization of a plane which needs not be flat, that is, the curvature is not necessarily zero. This is analogous to a curve generalizing a straight line. There are several more precise definitions, depending on the context and the mathematical tools that are used for the study.

Often, a surface is defined by equations that are satisfied by the coordinates of its points. This is the case of the graph of a continuous function of two variables. The set of the zeros of a function of three variables is a surface, which is called an implicit surface. If the defining three-variate function is a polynomial, the surface is an algebraic surface. For example, the unit sphere is an algebraic surface, as it may be defined by the implicit equation

A surface may also be defined as the image, in some space of dimension at least 3, of a continuous function of two variables (some further conditions are required to insure that the image is not a curve). In this case, one says that one has a parametric surface, which is parametrized by these two variables, called parameters. For example, the unit sphere may be parametrized by the Euler angles, also called longitude u and latitude v by


...
Wikipedia

...