*** Welcome to piglix ***

Supersingular prime (moonshine theory)


In the mathematical branch of moonshine theory, a supersingular prime is a prime number that divides the order of the Monster group M, which is the largest sporadic simple group. There are precisely fifteen supersingular prime numbers: the first eleven primes (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, and 31), as well as 41, 47, 59, and 71. (sequence in the OEIS)

The non-supersingular primes are 37, 43, 53, 61, 67, and any prime number greater than or equal to 73. All supersingular primes are Chen primes, but 37, 53, and 67 are also Chen primes, and there are Chen primes greater than 73.

Supersingular primes are related to the notion of supersingular elliptic curves as follows. For a prime number p, the following are equivalent:


...
Wikipedia

...