*** Welcome to piglix ***

Superpattern


In the mathematical study of permutations and permutation patterns, a superpattern is a permutation that contains all of the patterns of a given length. More specifically, a k-superpattern contains all possible patterns of length k.

If π is a permutation of length n, represented as a sequence of the numbers from 1 to n in some order, and s = s1, s2, ..., sk is a subsequence of π of length k, then s corresponds to a unique pattern, a permutation of length k whose elements are in the same order as s. That is, for each pair i and j of indexes, the ith element of the pattern for s should be less than the jthe element if and only if the ith element of s is less than the jth element. Equivalently, the pattern is order-isomorphic to the subsequence. For instance, if π is the permutation 25314, then it has ten subsequences of length three, forming the following patterns:

A permutation π is called a k-superpattern if its patterns of length k include all of the length-k permutations. For instance, the length-3 patterns of 25314 include all six of the length-3 permutations, so 25314 is a 3-superpattern. No 3-superpattern can be shorter, because any two subsequences that form the two patterns 123 and 321 can only intersect in a single position, so five symbols are required just to cover these two patterns.

Richard Arratia (1999) introduced the problem of determining the length of the shortest possible k-superpattern. He observed that there exists a superpattern of length k2 (given by the lexicographic ordering on the coordinate vectors of points in a square grid) and also observed that, for a superpattern of length n, it must be the case that it has at least as many subsequences as there are patterns. That is, it must be true that from which it follows by Stirling's approximation that n ≥ k2/e2, where e ≈ 2.71828 is Euler's number. This remains the strongest known lower bound on the length of superpatterns.


...
Wikipedia

...